Depletion of ε-COP in the COPI Vesicular Coat Reduces Cleistothecium Production in Aspergillus nidulans
نویسندگان
چکیده
We have previously isolated ε-COP, the α-COP interactor in COPI of Aspergillus nidulans, by yeast two-hybrid screening. To understand the function of ε-COP, the aneA (+) gene for ε-COP/AneA was deleted by homologous recombination using a gene-specific disruption cassette. Deletion of the ε-COP gene showed no detectable changes in vegetative growth or asexual development, but resulted in decrease in the production of the fruiting body, cleistothecium, under conditions favorable for sexual development. Unlike in the budding yeast Saccharomyces cerevisiae, in A. nidulans, over-expression of ε-COP did not rescue the thermo-sensitive growth defect of the α-COP mutant at 42℃. Together, these data show that ε-COP is not essential for viability, but it plays a role in fruiting body formation in A. nidulans.
منابع مشابه
Genetic inactivation of COPI coatomer separately inhibits vesicular stomatitis virus entry and gene expression.
Viruses coopt cellular membrane transport to invade cells, establish intracellular sites of replication, and release progeny virions. Recent genome-wide RNA interference (RNAi) screens revealed that genetically divergent viruses require biosynthetic membrane transport by the COPI coatomer complex for efficient replication. Here we found that disrupting COPI function by RNAi inhibited an early s...
متن کاملSilkworm Coatomers and Their Role in Tube Expansion of Posterior Silkgland
BACKGROUND Coat protein complex I (COPI) vesicles, coated by seven coatomer subunits, are mainly responsible for Golgi-to-ER transport. Silkworm posterior silkgland (PSG), a highly differentiated secretory tissue, secretes fibroin for silk production, but many physiological processes in the PSG cells await further investigation. METHODOLOGY/PRINCIPAL FINDINGS Here, to investigate the role of ...
متن کاملPhysiological Functions of the COPI Complex in Higher Plants
COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed α-, β-, β'-, γ-, δ-, ε-, and ζ-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here ...
متن کاملBiochemical heterogeneity and phosphorylation of coatomer subunits.
The coat protomer complex I (COPI) family of coat proteins are involved in the assembly of membrane-associated coats thought to mediate vesicular transport between the endoplasmic reticulum and the Golgi complex, between adjacent Golgi cisternae, and possibly in the endocytic pathway. We investigated whether this heterogeneity in the sites of COPI action might be reflected in biochemical hetero...
متن کاملDilysine motifs in exon 2b of SMN protein mediate binding to the COPI vesicle protein α-COP and neurite outgrowth in a cell culture model of spinal muscular atrophy.
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder that stems from low levels of survival of motor neuron (SMN) protein. The processes that cause motor neurons and muscle cells to become dysfunctional are incompletely understood. We are interested in neuromuscular homeostasis and the stresses put upon that system by loss of SMN. We recently reported that α-COP, a member of th...
متن کامل